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Coordinate Reference Frames:
In Photogrammetry, we have two primary reference coordinates system: 

◦ Image Space Coordinate system (𝑥 − 𝑥0, 𝑦 − 𝑦0, −𝑓)

◦ Object Space Coordinate system, which is the 3D region covered by the photograph or image

These coordinates reference systems will always be considered to be Cartesian and right-handed



Coordinate Reference Frames:

❑Image Space Coordinate System: 

The origin of this frame is the principal point (𝑥0, 𝑦0)

By placing the 3-D origin at the perspective center, 
this yields to referred as the sensor coordinates or 
image space coordinates

This figure is taken from “E.Mikhail, J.Bethel, and 
C.McGlone “Introduction to Modern Photogrammetry””



Sensor Model (Interior Orientation Parameter IOP)
The Interior Orientation defines the camera(sensor) characteristics required for reconstructing 
the object space bundle of rays from the corresponding image points.

In a frame camera, these characteristics would include at least:
◦ the focal length (or principal distance)

◦ location of the principal point

◦ A description of the lens distortion



Sensor Model (Interior Orientation Parameter IOP)
The principal point is usually given with respect to the coordinate axes defined by fiducial marks.

For digital cameras, the principal point is usually given with respect to the image row-column 
coordinate system

Interior Orientation parameters are: focal length (f), principal point (x0, y0), and lens distortions



Platform Model (Exterior Orientation EO)
This model establishes the position and orientation of the bundle of rays with respect to the 
object space coordinate system

Each bundle requires 6 independent elements (3 for position and 3 for orientation)

For frame cameras: one bundle represents the entire image

In case of a linear sensor: each line defines a new bundle (with its own 6 elements of EO)



Platform Model (Exterior Orientation EO)

For each bundle of rays: the three elements of position fix the location of the 
perspective center (point (L) in the figure)

These three elements usually referred to as the exposure station(camera station), and 
they are expressed as:

𝐿 =
𝑋𝐿
𝑌𝐿
𝑍𝐿

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Platform Model (Exterior Orientation EO)
With this point (L), the rays can still take any orientation in space.

To describe this orientation in the object space, 3 independent parameters will be sufficient (using 
the geometry)

These 3 parameters define the 3D rotation matrix (M), which relates the object space and image 
space systems.

These 3 parameters are 𝜔, 𝜙, and 𝜅, representing the rotation around the X-axis, Y-axis, and Z-axis, 
respectively.

Then, the EOPs for any image are: (𝑋𝐿 , 𝑌𝐿, and 𝑍𝐿) and (𝜔, 𝜙, and 𝜅)



3D Rotation Matrix (M)



3D Rotation Matrix (M)
In 3D, there are 3 elementary rotations

One about each axis (X, Y, and Z axis)

To construct the rotation matrix, you need three angles, 
which are 𝜔,𝜙, 𝑎𝑛𝑑 𝜅



3D Rotation Matrix (M)
First, perform the rotation around the X-axis (M𝜔)

𝑀𝜔 =
1 0 0
0 cos𝜔 sin𝜔
0 − sin𝜔 cos𝜔

Positive rotation will advance the +Y axis towards +Z axis.



3D Rotation Matrix (M)
Then, make the rotation around the Y-axis (𝑀𝜙)

𝑀𝜙 =
cos𝜙 0 −sin𝜙
0 1 0

sin𝜙 0 cos𝜙

Positive rotation will advance the +Z axis towards +X axis.



3D Rotation Matrix (M)
Lastly, make the rotation around the Z-axis (𝑀𝜅)

𝑀𝜅 =
cos 𝜅 sin 𝜅 0
− sin 𝜅 cos 𝜅 0

0 0 1

Positive rotation will advance the +X axis towards +Y axis.



3D Rotation Matrix (M)
Then, the rotation matrix (𝑀) can be constructed as a set of sequential rotations: 

𝑀 = 𝑀𝜅𝑀𝜙𝑀𝜔

Since 𝑀𝜅, 𝑀𝜙, 𝑎𝑛𝑑 𝑀𝜔 are each orthogonal, M is also orthogonal matrix     (what does that 
mean?)



Elements of the 3D Rotation Matrix (M)

𝑀 =

cos𝜙 cos 𝜅 cos𝜔 sin 𝜅 + sin𝜔 sin𝜙 cos 𝜅 sin𝜔 sin 𝜅 − cos𝜔 sin𝜙 cos 𝜅
−cos𝜙 sin 𝜅 cos𝜔 cos 𝜅 − sin𝜔 sin𝜙 sin 𝜅 sin𝜔 cos 𝜅 + cos𝜔 sin𝜙 sin 𝜅

sin𝜙 −sin𝜔 cos𝜙 cos𝜔 cos𝜙



Suppose that the elements of the rotation matrix were given, then the rotation angles can be computed 
as:

𝑚31 = sin𝜙 ⇒ 𝜙 = sin−1 𝑚31

𝑚32

𝑚33
=
−sin𝜔 cos𝜙

cos𝜔 cos𝜙
= − tan𝜔 ⇒⇒⇒ 𝜔 = tan−1(

−𝑚32

𝑚33
)

𝑚21

𝑚11
=
−cos𝜙 sin 𝜅

cos𝜙 cos 𝜅
= − tan𝜅 ⇒⇒⇒ 𝜅 = tan−1

−𝑚21

𝑚11

Don’t forget to return the angles (𝜔 𝑎𝑛𝑑 𝜅) to their appropriate quadrants



Next Lecture: 

◦ We will continue this chapter about the Mathematical concepts of Photogrammetry, covering: 

◦ Collinearity 

◦ Coplanarity  

◦ 7-Parameter Transformation and derive the partial derivatives for this transformation 

◦ Quiz-4 will be on Sunday, 22/1/2023, at the beginning of the lecture (DON’T BE LATE).



Collinearity Equation



Collinearity Equations
The fundamental characteristics of frame imaging is 
that:

◦ the perspective center

◦ image point

◦ and the corresponding object point

all lie on a line in space.

This line can be defined as vector components in the 
image coordinate system or vector components in the 
object space coordinate system

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Collinearity Equations
These image coordinates and object coordinates will 
be related using the EOP as: 

𝑥
𝑦
−𝑓

= 𝑀
𝑋
𝑌
𝑍

From this equation and what we have covers in the 2D 
transformations, what are the missing parameters? 

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Collinearity Equations
the previous equation assumes that the origin of the two coordinates system coincides (matches).

However, in fact, they don’t match. So, we need to introduce shift terms to place a local origin of object space at the 
perspective center (L).

We also need to introduce a scale parameter (𝜆) to express the difference in magnitude between the image space vector 
and the corresponding object space vector.

𝑥′′

𝑦′′

−𝑓
= 𝜆𝑀

𝑋 − 𝑋𝐿
𝑌 − 𝑌𝐿
𝑍 − 𝑍𝐿

Note that you have to use the corrected (refined) image coordinates. 

𝑥′ = 𝑥 − 𝑥0 and           𝑦′ = 𝑦 − 𝑦0

𝑥′′ = 𝑥′ + Δ𝑑𝑥 and           𝑦′′ = 𝑦′ + Δ𝑑𝑦

Where Δ𝑑𝑥 𝑎𝑛𝑑 Δ𝑑𝑦 are the total distortion in x and y coordinates, respectively. 



Collinearity Equations
To delete the nuisance(scale) factor (𝜆): 

𝑥′′

𝑦′′

−𝑓
= 𝜆

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

𝑋 − 𝑋𝐿
𝑌 − 𝑌𝐿
𝑍 − 𝑍𝐿

After multiplying the matrix and vectors on the RHS:
𝑥′′ = 𝜆 𝑚11 𝑋 − 𝑋𝐿 +𝑚12 𝑌 − 𝑌𝐿 +𝑚13 𝑍 − 𝑍𝐿

𝑦′′ = 𝜆 𝑚21 𝑋 − 𝑋𝐿 +𝑚22 𝑌 − 𝑌𝐿 +𝑚23 𝑍 − 𝑍𝐿

−𝑓 = 𝜆 𝑚31 𝑋 − 𝑋𝐿 +𝑚32 𝑌 − 𝑌𝐿 +𝑚33 𝑍 − 𝑍𝐿



Collinearity Equations
To delete the nuisance(scale) factor (𝜆): 

Divide the 1st and 2nd equation by the 3rd equation:

𝑥′′ = −𝑓
𝑚11 𝑋 − 𝑋𝐿 +𝑚12 𝑌 − 𝑌𝐿 +𝑚13 𝑍 − 𝑍𝐿

𝑚31 𝑋 − 𝑋𝐿 +𝑚32 𝑌 − 𝑌𝐿 +𝑚33 𝑍 − 𝑍𝐿

𝑦′′ = −𝑓
𝑚21 𝑋 − 𝑋𝐿 +𝑚22 𝑌 − 𝑌𝐿 +𝑚23 𝑍 − 𝑍𝐿

𝑚31 𝑋 − 𝑋𝐿 +𝑚32 𝑌 − 𝑌𝐿 +𝑚33 𝑍 − 𝑍𝐿



Collinearity Equations
Since the rotation matrix is orthogonal 𝑀−1 = 𝑀𝑇

The collinearity equation can also be rewritten as:
𝑋 − 𝑋𝐿
𝑌 − 𝑌𝐿
𝑍 − 𝑍𝐿

=
1

𝜆
𝑀𝑇

𝑥′′

𝑦′′

−𝑓

we can repeat the same previous steps to delete the scale factor

𝑋 − 𝑋𝐿 = 𝑍 − 𝑍𝐿 ⋅
𝑚11𝑥

′′ +𝑚21𝑦
′′ +𝑚31 −𝑓

𝑚13𝑥
′′ +𝑚23𝑦

′′ +𝑚33 −𝑓

𝑌 − 𝑌𝐿 = 𝑍 − 𝑍𝐿 ⋅
𝑚12𝑥

′′ +𝑚22𝑦
′′ +𝑚32 −𝑓

𝑚13𝑥
′′ +𝑚23𝑦

′′ +𝑚33 −𝑓



Collinearity Equations
As we have covered in SE331: 

Least-squares technique will be used to estimate the parameters of the collinearity equation  

(Can you point out these parameters? Can you also tell if the collinearity equation is Linear or 

Nonlinear?)



Collinearity Equations 
Since it is nonlinear, this will force us to use Taylor’s Series Approximations

Then, collinearity equation can be rewritten as: 

𝑙𝑒𝑡 ⇒
𝑈
𝑉
𝑊

= 𝑀
𝑋 − 𝑋𝐿
𝑌 − 𝑌𝐿
𝑍 − 𝑍𝐿

𝑡ℎ𝑒𝑛 ⇒ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠:

𝐹1 = 𝑥′′ + 𝑓
𝑈

𝑊

𝐹1 = 𝑦′′ + 𝑓
𝑉

𝑊



Collinearity Equations
Then, the condition equations can be linearized as: 

𝐴𝑣 + 𝐵Δ = 𝑓 𝑜𝑟 𝐾

(This form of Equation is defined in Observation Adjustment as GLS)

Note that 𝑓 in the RHS of the previous equation is not the focal length. It is the misclosure vector, and 

can be computed as: 

𝑓 𝑜𝑟 𝐾 =
−𝐹1 𝑙0, 𝑥0

−𝐹1 𝑙0, 𝑥0



Collinearity Equations
𝐴 is the partial derivatives matrix of condition equations wrt observations

𝐵 is the partial derivatives matrix of condition equations wrt parameters (unknowns)

Δ is the parameters (unknowns) vector or some time called (space vector) 

𝑣 is the observations residuals



Coplanarity Equation



Coplanarity Equations
As illustrated in the figure: 

Suppose we have two photos that are 
relatively oriented with respect to each 
other

Then, the conjugate object space rays 
defined by the image points and their 
perspective centers will intersect 
exactly. 

This intersection defines the object’s 
Space Position. 

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Coplanarity Equations
These two points rays and the base-
line between the two perspective 
centers define a plane.

The equation that enforces this 
relationship between the three sides of 
this plane is the Coplanarity Equation

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Coplanarity Equations
The Coplanarity equation for the figure 
on the right can be written as: 

𝑏 ⋅ റ𝑎1 × റ𝑎2 = 0

Where, vector 𝑏 is: 

𝑏 =

𝑏𝑋
𝑏𝑌
𝑏𝑍

=

𝑋𝐿2 − 𝑋𝐿1
𝑌𝐿2 − 𝑌𝐿1
𝑍𝐿2 − 𝑍𝐿1

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Coplanarity Equations
The Coplanarity equation for the figure 
on the right can be written as: 

𝑏 ⋅ റ𝑎1 × റ𝑎2 = 0

Where, vector റ𝑎1is: 

റ𝑎1 =

𝑢1
𝑣1
𝑤1

= 𝑀1
𝑇

𝑥1 − 𝑥01
𝑦1 − 𝑦01
−𝑓

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Coplanarity Equations
The Coplanarity equation for the figure 
on the right can be written as: 

𝑏 ⋅ റ𝑎1 × റ𝑎2 = 0

Where, vector റ𝑎2is: 

റ𝑎2 =

𝑢2
𝑣2
𝑤2

= 𝑀2
𝑇

𝑥2 − 𝑥02
𝑦2 − 𝑦02
−𝑓

This figure is taken from “E.Mikhail, J.Bethel, 
and C.McGlone “Introduction to Modern 
Photogrammetry””



Coplanarity Equations
The coplanarity equation can also be written in the determinant form using the 
vector components:

𝐹 =
𝑏𝑋 𝑏𝑌 𝑏𝑍
𝑢1 𝑣1 𝑤1

𝑢2 𝑣2 𝑤2

= 0

The coplanarity equation is mainly used to do relative orientation between pairs of 
photos

This can be done by fixing 7 parameters among the 12 parameters (EOPs of two 
photos), and solving for the remaining 5 parameters



Coplanarity Equations
The advantage of using that model is no need to have approximated space 
coordinates generated in the model since the equations have no object coordinates.

However, using this model in a triplet using only coplanarity condition does not 
guarantee that the three rays will intersect in a single point

To enforce the three rays to intersect at the same point, the Scale Restraint Equation 
is used. 



Next week: 
◦ We will derive the partial derivatives for the collinearity and coplanarity equations

◦ If the MATLAB is still not working, we might have a second midterm exam by the end of this month

◦ We will talk about the most useful functions of Photogrammetry, which are Space Intersection, Space 
Resection, and Bundle Block Adjustment.

◦ There will be a quiz next week (from the end of quiz 3 topics until today’s lecture)  



3D Conformal Transformation



3D Conformal Transformation
▪ This type of transformation is also called the 7-parameter Transformation

▪ Applications of 3D Conformal Transformation: 
▪ Transform the arbitrary stereomodel coordinates to object space systems

▪ Determining the initial approximations (whenever the situation is not straightforward)

▪ As we recall from the 2D transformation, conformal transformation means the shape is 
preserved.

𝑥
𝑦
𝑧

= 𝜆𝑀
𝑋
𝑌
𝑍

+

𝑡𝑥
𝑡𝑦
𝑡𝑧



Partial Derivatives of the 7-Parameter 
Transformation
Recall from the previous slides: 

𝐴𝑣 + 𝐵Δ = 𝑓

The most common case is when the image coordinates are considered the observation, the IOPs 
are known, and the remaining variables are considered unknown 

Remaining variables are EOPs and the 3D information of the object point

Then, the least-squares can be written as: 
𝑣 + 𝐵Δ = 𝑓



Partial Derivatives of the 7-Parameter 
Transformation

𝑣 + 𝐵Δ = 𝑓

The size of each matrix or vector: 

𝑣: 3𝑛𝑥1 𝐵: 3𝑛𝑥𝑢 Δ: 𝑢𝑥1 𝑓: 3𝑛𝑥1➔ 𝑓 = −𝐹

As we have mentioned previously, there are many ways to find the partial derivatives of a 
function

One way is by making the analytical partial derivatives 

Another way is by finding them numerically 



Partial Derivatives of the 7-Parameter 
Transformation
Assume we have a 7-parameter model, where the parameters are the scale, EOPs, and the 
object point coordinates

𝑥
𝑦
𝑧

= 𝜆𝑀
𝑋
𝑌
𝑍

+

𝑡𝑥
𝑡𝑦
𝑡𝑧

Then, the condition equation for that model can be written as:

𝐹 =
𝑥
𝑦
𝑧
− 𝜆𝑀

𝑋
𝑌
𝑍

−

𝑡𝑥
𝑡𝑦
𝑡𝑧



Partial Derivatives of the 7-Parameter 
Transformation
Here I will derive one angle and one shift parameters.

The rest will be your HW#4.

For 𝑡𝑥: 

𝜕𝐹

𝜕𝑡𝑥
=

−1
0
0

For 𝜔: 

𝜕𝐹

𝜕𝜔
= −𝜆

𝜕𝑀

𝜕𝜔

𝑋
𝑌
𝑍

Where, 
𝜕𝑀

𝜕𝜔
= 𝑀𝜅𝑀𝜙

𝜕𝑀𝜔

𝜕𝜔
➔

𝜕𝑀𝜔

𝜕𝜔
=

0 0 0
0 − sin𝜔 cos𝜔
0 − cos𝜔 −sin𝜔



Partial Derivatives of the 7-Parameter 
Transformation

Where, 
𝜕𝑀

𝜕𝜔
= 𝑀𝜅𝑀𝜙

𝜕𝑀𝜔

𝜕𝜔
➔

𝜕𝑀𝜔

𝜕𝜔
=

0 0 0
0 − sin𝜔 cos𝜔
0 − cos𝜔 −sin𝜔

Then,
𝜕𝑀

𝜕𝜔

=
cos 𝜅 sin 𝜅 0
− sin 𝜅 cos 𝜅 0

0 0 1

cos𝜙 0 − sin𝜙
0 1 0

sin𝜙 0 cos𝜙

0 0 0
0 − sin𝜔 cos𝜔
0 − cos𝜔 − sin𝜔

=

0 cos 𝜅 cos𝜔 sin𝜙 − sin 𝜅 sin𝜔 cos𝜔 sin 𝜅 + cos 𝜅 sin𝜙 sin𝜔
0 − cos 𝜅 sin𝜔 − cos𝜔 sin 𝜅 sin𝜙 cos 𝜅 cos𝜔 − sin 𝜅 sin𝜙 sin𝜔
0 − cos𝜙 cos𝜔 −cos𝜙 sin𝜔



Partial Derivatives of the 7-Parameter 
Transformation

𝜕𝐹

𝜕𝜔
= −𝜆

0 cos 𝜅 cos𝜔 sin𝜙 − sin 𝜅 sin𝜔 cos𝜔 sin 𝜅 − cos 𝜅 sin𝜙 sin𝜔
0 −cos 𝜅 sin𝜔 − cos𝜔 sin 𝜅 sin𝜙 cos 𝜅 cos𝜔 + sin 𝜅 sin𝜙 sin𝜔
0 −cos𝜙 cos𝜔 cos𝜙 sin𝜔

𝑋
𝑌
𝑍

Lastly, the 7-parameter model will be derived for the points object-space positions.

𝜕𝐹/𝜕𝑋 𝜕𝐹/𝜕𝑌 𝜕𝐹/𝜕𝑍

In your HW#4: derive the partial derivatives for the remaining parameters (look into the HW 
page for more information).



Next Lecture: 

▪ Starting the last Chapter: Operations of Photogrammetry
▪ Resection 

▪ Intersection 

▪ BBA

▪ Single-Ray Backprojection

▪ Relative Orientation

▪ Absolute Orientation
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